LHCCP Working Session on Middleware

Participants:
D. Myers, C.-H. Sicard, U. Epting,
K. Kostro, J.-J. Gras, I. Laugier, A. Risso,
E. Ciapala, F. Calderini, V. Baggiolini
Outline

• **Scope** of the working session
 – Definition of “Middleware”

• **Inventory** of ongoing middleware activities
 – Clients & Users
 – Middleware initiatives

• How to achieve “seamless data exchange”
 – Scope & Requirements
 – Solution approaches
 – Issues & Challenges

• **Organization**
 – Division of work
 – Collaborations

• Required **decisions & activities**

• Conclusions
Scope of the session

• Middleware (Definition for this session:)
 – “communication glue between distributed software components”
 – functionality to exchange data and commands between different parts of a distributed control system
 – functionality for information diffusion

• We did not discuss
 – Database access
 – Software development environment
 – Hardware platforms
 – Network & Fieldbus infrastructure
 – etc. etc.

• No detailed technical discussions
Outline

• Scope of the working session
 – Definition of “Middleware”

• Inventory of ongoing middleware activities
 – Clients & Users
 – Middleware initiatives

• How to achieve “seamless data exchange”
 – Scope & Requirements
 – Solution approaches
 – Issues & Challenges

• Organization
 – Division of work
 – Collaborations

• Required decisions & activities

• Conclusions
Inventory: Middleware Clients & Users (1)

- **LHC/VAC**: (I. Laugier) Control of all vacuum equipment
 - Communication with 3 vacuum systems; Mobile systems
 - 50 readings/sec, precise timestamps,
 - Data exchange with cryogenics and beam measurement
 - Introducing PLCs now

- **SL/RF** (E. Ciapala): RF System for LHC
 - Acceleration, Damping and Beam control
 - Monitoring & control, various data formats, large blocks of data
 - Access control, control priorities, tracing of actions
 - PLCs and in-house equipment controllers
 - Users of PS/SL middleware
Inventory: Middleware Clients & Users (2)

• **SL/BI** (J.-J. Gras): Beam Instrumentation Software
 – GUIs, Server software, drivers; Logging & RT feedback
 – Communication *between the above and with external world*
 – Want to use PS/SL middleware and **contribute to its success**
 – Will develop own facilities (only when needed)

• **Alarms** SL/CO (F. Calderini): CERN-wide alarm distribution
 – Use case: users subscribe to groups of fault states (“subjects”)
 – **Reliability, availability, traceability**; Bursty traffic, not time critical
 – 3-tier architecture using open message-oriented middleware
 – Active collaboration with PS/SL middleware project & LDIWG

• (There are certainly others...)
Inventory: Middleware Initiatives (1)

• **ST/MO**, (U. Epting) Technical Infrastructure Monitoring
 – TCR: Monitoring 24h/day; 365days/year; troubleshooting coordin.
 – Integration of many diverse systems (in-house, PLC, SCADA)
 – Data exchange with external world
 – message-oriented middleware; Participation in LDIWG

• **JCOP**: Controls for LHC experiments
 – Distributed control system based on SCADA
 – Middleware: OPC for industrial; DIM for custom developments
 – Communication with LHC machine, Safety system, Cryogenics, etc => LDIWG

• **PS/SL Middleware project**: MW for PS&SL accelerators
 – Requirements from PS/SL equipment groups
 – Selection of technology: CORBA & Message-Oriented Middleware
 – Elaboration of Architecture and Interfaces
 – Prototypes for Summer ‘00, first production software December 00
Inventory: Middleware Initiatives (2)

- LHC Data Interchange WG (C.-H. Sicard):
 - CERN-wide LHC data exchange
 - Participants: Accelerators, Experiments, ST, Cryogenics, etc.
 - Requirements for LHC data exchange
 - Communicating entities
 - Data exchanged & Traffic characteristics
 - Overall Architecture
 - Phase 2: strategies for implementation
Outline

• Scope of the working session
 – Definition of “Middleware”

• Inventory of ongoing middleware activities
 – Clients & Users
 – Middleware initiatives

• How to achieve “seamless data exchange”
 – Scope & Requirements
 – Solution approaches
 – Issues & Challenges

• Organization
 – Division of work
 – Collaborations

• Required decisions & activities

• Conclusions
Seamless Data Exchange Requirements

- CERN has several (middleware) **Domains**
 - Accelerators, Techn. Infrastructure, Experiments, Cryogenics
- Communication **requirements**
 - *Inside* a domain: mostly equipment monitoring & control
 - *Between* domains: mostly information diffusion

==> Two logical levels of Middleware
Intra-domain vs. Inter-domain: Requirements

Intra-domain
- Monitoring & Control
- High traffic rate
- Low latency required
- Specialized, “agreed-on” data
- Close coupling between communicating entities

Inter-domain
- Information diffusion
- Lower traffic rate
- Higher latency acceptable
- Self-describing data
- Loose coupling between communicating entities
Inside Domain: Present Approach

- Each domain uses their own Middleware solution
 - Accelerator Complex: PS/SL middleware project
 - Experiments: JCOP
 - ST/MO: Technical Infrastructure Monitoring (TIM)
 - Cryogenics: Turn-key solution
- Also different solutions for:
 - Data model (Device-oriented or Channel-oriented)
 - Architecture & APIs
 - Technology & Implementations
- Common solutions might be possible
Between Domains: Proposed Approach

- A single Middleware solution (Data Interchange Bus) accepted by all domains
- A single interface to domains
- Maybe gateways needed!

- Might use technology from one of the existing MW initiatives
Issues & Challenges

• Mapping between data models
 – channel-oriented <=> device-oriented <=> “subject-oriented”

• Common naming schemes
 – (what are naming schemes?)

• Definition of common interfaces
 – Agree on: APIs, Protocols, data representations

• Integration of different entities & technologies
 – Industrial/OPC + Unix/CORBA/MoM

Organizational (“human”) aspects are more difficult than technical ones!
Outline

• Scope of the working session
 – Definition of “Middleware”
• Inventory of ongoing middleware activities
 – Clients & Users
 – Middleware initiatives
• How to achieve “seamless data exchange”
 – Scope & Requirements
 – Solution approaches
 – Issues & Challenges
• Work Organization
 – Division of work
 – Collaborations
• Required decisions & activities
• Conclusions
Work Organization

• **Division** of Middleware work
 – Inter-domain Middleware => LDIWG-2
 – Accelerator Middleware => PS/SL Middleware project
 – Infrastructure monitoring Middleware => ST/MO TIM
 – Experiment Middleware => JCOP
 – Alarms, Cryo, Vac, Equipment Grps => **Choose your MW partner!**

• **Collaboration** areas
 – Definition of (inter-domain) **Interfaces**
 – Naming conventions
 – Selection & support of middleware **technology**
 – Gateways OPC – Corba/MoM
 – Implementation of components

• **An organizational structure** has to be put in place!
 – LDIWG-2? LHC-CP sub-project? Other?
Outline

- Scope of the working session
 - Definition of “Middleware”
- Inventory of ongoing middleware activities
 - Clients & Users
 - Middleware initiatives
- How to achieve “seamless data exchange”
 - Scope & Requirements
 - Solution approaches
 - Issues & Challenges
- Organization
 - Division of work
 - Collaborations
- Required decisions & activities
- Conclusions
Decisions & Activities (Incomplete List)

• Decisions required
 – Define future of LDIWG
 – Define organizational scope of “LHC Middleware” (CERN groups)
 – Create organizational structures

• Activities
 – Review PS/SL Middleware User Requirements in the light of LHC
 – Integrate other (e.g. LHC/VAC) requirements somewhere
 – Define functional scope of LHC Middleware (latency/throughput)
 – Find out about deadlines for outsourced systems
 – Agree on Interfaces with Inter-domain middleware
 – Agree on a naming scheme
Conclusions

• A lot has been already done
 – Intra-domain: Requirements, Technology selection, Architecture
 – Inter-domain: Requirements and Architecture (LDIWG)

• 3 Practical Middleware Initiatives with man-power
 – TIM (ST/MO), JCOP, PS/SL Middleware

• Accelerator Domain: PS/SL Middleware is the candidate

• Organization
 – Work distribution is relatively straight-forward
 – Collaborations are possible but need to be encouraged
 – Organizational structure is required

• Many Thanks to the working session participants!