

The LHC Alarm Service

LASER (Lhc Alarm SERvice) Project Report 5th April 2001

http://cern.ch/proj-laser e-mail: <u>Francesco.Calderini@cern.ch</u>

Presentation outline

- Overview
- Current status
- Objectives for 2001
- Conclusions

Presentation outline

- Overview
- Current status
- Objectives for 2001
- Conclusions

- Project mandate:
 - "Provide a solution for naming, receiving, processing, transmitting and displaying all alarm conditions inherent to the operation of the future LHC machine"
- What does that mean?

- The Alarm Service: what, where, why, who.
 - What?
 - Deals with 'problems'
 - Where?
 - "Accepts from anywhere, distributes everywhere"
 - Why?
 - Offers standardisation and standard facilities (services)
 - Who?
 - Makes the results available for:
 - 'dedicated displays'
 - any 'external software'

What

- An alarm/warning is something wrong, abnormal, a problem with the process
- The process is anything which could affect the well being of the LHC complex be it either: hardware, software or environment
- Since we consider problems both at the alarm level and at the warning level, we refer to them as Fault States (FS)

Where

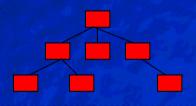
- LHC Control Centre(s) and specialists will require FS information from any part of the CERN site:
 - Radio Frequency, Power Converters, Magnets
 - Beam monitoring
 - Beam transfer
 - Vacuum
 - Cryogenic
 - Cooling & Ventilation
 - Electricity
 - Safety System
 - Experiments
 - Control SW
 - Environment

- Why
 - Services:
 - FS definition
 - Gathering
 - Analysis
 - Distribution
 - Archive management

- Why
 - Services:
 - FS definition
 - Gathering
 - Analysis
 - Distribution
 - Archive management

- Standard way to define a FS
- Dedicated FS definition management consoles

- Why
 - Services:
 - FS definition
 - Gathering
 - Analysis
 - Distribution
 - Archive management

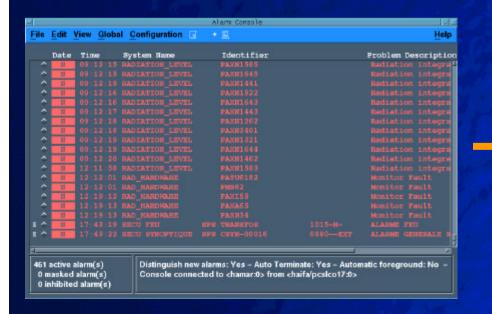

- ⇒ FS are collected from all the different sources
- A Single Point of Access is offered for all the alarm information

- Why
 - Services:
 - FS definition
 - Gathering
 - Analysis
 - Distribution
 - Archive management

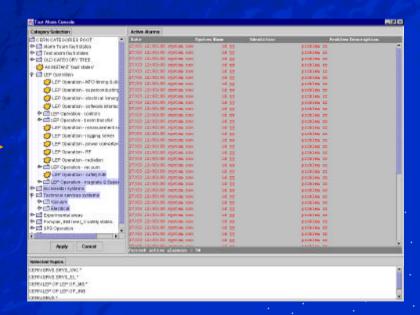
- Reduction
 - node
 - multiplicityoscillation
- Conditioning
 - mode
 - maintenance

- Why
 - Services:
 - FS definition
 - Gathering
 - Analysis
 - Distribution
 - Archive management

 Treated FS are distributed accordingly to a well known alarm category group hierarchy


Interested clients subscribe to the content hierarchy

- Why
 - Services:
 - FS definition
 - Gathering
 - Analysis
 - Distribution
 - Archive management


- ⇒ Storage
- ⇒ Retrieval
- ⇒ Statistics

- Who
 - Dedicated Alarm Consoles

Today

Tomorrow(?)

- Who
 - External Software
 - Diagnostic tools
 - Control System components
 - User specific applications

- The Alarm Service does not:
 - Survey the equipment
 - responsibility of
 - » Equipment groups
 - » Control SW writers
 - Decide what is a FS
 - we define:
 - » how to describe a FS
 - we accept :
 - » FS descriptions
 - » FS messages

- Related projects:
 - Controls Middleware (PS/SL)

 - JCOP (IT)
 SPS2001 (SL)
 CESAR (SL)
 CSAM (ST)
 HELIX (SL)
 UNICOS (LHC)

Presentation outline

- Overview
- Current status
- Objectives for 2001
- Conclusions

Current Status

- Have an operational system that <u>must</u> be maintained for:
 - SPS
 - technical services
 - safety
- Collaboration with the PS/SL CMW project
 - MOM technologies investigation
 - Publish/Subscribe paradigm
- Collaboration with ST
 - Prototype of an alarm facility using PVSS presented at ST Chamonix

Current Status

- Collaboration with STRING II
 - Extracting alarm information from PCView through CMW OPC gateway
- Anyone requiring alarm facilities NOW can be 'easily' connected to the present alarm system
 - display + treatment facilities
 - access to all technical and safety information
- All new FS will be attached to the current system until it is switched off

Presentation outline

- Overview
- Current status
- Objectives for 2001
- Conclusions

- User requirements
 - 'Alarm Service Survey' in preparation
 - UR gathering and analysis by Q2 2001
 - UR document by Q3 2001
- Technology investigation
 - Two possible solutions:
 - Use an industrial system
 - Use open technologies
 - Decision by Q4 2001
- Functional and architectural specification
 - Depending on the adopted solution
 - Carried on in parallel with technology investigation
 - Preliminary functional and architectural spec by Q4 2001/Q1 2002

- Alarm Service Survey
 - Addressed to anybody concerned
 - Operators of various Control Rooms
 - Equipment and SW specialists
 - Related projects
 - •
 - Consists of:
 - Definitions of basic terms
 - Alarm Service overview
 - User Requirements capture at different levels:
 - Information provider (interfaces)
 - End-User (GUI & services)

- Alarm Service sensitive issues:
 - Scalability
 - Openness
 - Reliability
 - Integration
 - Alarm analysis
 - Alarm archive management
 - Graphical alarm display

- SCADA based solution
 - ETM PVSS
 - Pros
 - Industrial system (supported, maintained, built-in functionality, ...)
 - Adopted CERN wide :
 - » Experiments Slow Control System (JCOP)
 - » CERN Safety Alarm Monitoring (ST)
 - » Cryogenics (?)
 - » Vacuum (?)
 - **»**
 - Cons
 - Industrial system (vendor dependent, technology dependent, ...)
 - Need for customisation

- 'In-house' solution
 - Three-tier architecture
 - We are investigating :
 - PS/SL Middleware for communication
 - Device/Property model (Device Alarm properties)
 - Publish & Subscribe on subjects (Alarm Category group hierarchy)
 - EJB for the business tier
 - Java/WEB based solutions for display
 - We are prototyping :
 - Alarm transmission chain :
 - » Device Server/SCADA -> business-tier -> Alarm Console

- 'In-house' solution
 - Pros
 - Provides optimised solutions
 - Flexibility
 - Choice
 - Cons
 - Maintenance

Three-tier architecture proposal

Alarm Consoles

Sys Admin Consoles FS Definition Consoles

External Clients

ALARM CATEGORIES

Middleware

Grouping & Distribution

Conditioning

Reduction

Archive Management

FS Definition Management DB

ALARM PROPERTIES

Middleware

Resource

Device Servers Accelerator Control SW OPC Servers

SCADA

Presentation outline

- Overview
- Current status
- Objectives for 2001
- Conclusions

Conclusions

- 2001: a year of study, analysis and investigation
 - Requirements specification and analysis
 - Technical study and prototyping:
 - SCADA
 - Opened technologies
 - Progress on Functional and Architectural specifications
 - Operational system to maintain
- What next?
 - -2002
 - Operational prototype
 - **2003**
 - Prototype testing and validation using QRL
 - Switch off old system
 - **2004**
 - System in operation for LHC Sector Tests

Thanks for your attention!

http://cern.ch/proj-laser

Any question?