Overview

• The process
• Major user requirements
• Architecture
• Major technical choices
• Infrastructure requirements
 – location
 – technical services
 – control system services
 – communications
• Plans for installation and commissioning
• Milestones for the work
• Conclusion

The electrical network

• Substations, distribution and power lines
 – HV substations
 – MV substations
 – LV distribution systems
 – The power lines connecting them
• The equipment
 – Breakers on all voltage levels
 – Transformers on all voltage levels
 – UPS systems
 – Battery chargers
 – Process control devices, etc., etc.
• The dimension
 – Lots of equipment…
 – Yearly consumption: 1000 GWh
• Process variables
 – 100,000 input channels

The HV-MV network
Some user requirements…

• Remote monitoring of equipment states
 – Status lists of electrical equipment
 – Synoptic diagrams - single line diagrams
 – Alarm lists

• Data recording for analysis
 – Events, status changes
 – Measurement states

• Process control (local or centralized)
 – Automatic procedures via standard languages
 – High-level procedures without programming

Architecture

• Centralized
 – SCADA applications
 – Configuration and logging databases
 – Web services

• Distributed
 – Data acquisition interfaces (front ends)
 – Serial lines to equipment – field-buses

• Electronic equipment interfaces
 – Digital input
 – Analogue input via transducers (limited usage)
 – Output

Integration

• CERN data exchange
 – Follows ST divisional principles
 – Centralized interface via TDS
 – Data types: States, measurements, CAS alarms, output

• Communication and networks
 – Technical (services) network (128.142…) - essential!
 – Dedicated optical lines to critical equipment

• Terminals/User interfaces
 – X terminals (substations, TCR, offices, BAs)
 – New SPS PC terminals
 – Web interface
Data acquisition - localization

Hardware and OS

- Server systems
 - HP (Digital, Compaq)
 - OS: Tru64 Unix
- Data acquisition
 - Intel PC Industrial computer ("rugged") – 48V DC (battery)
 - OS: Windows NT
 - AB/CO VME Front End for special purposes
 - OS: LynxOS
- Equipment interfaces
 - Data Acquisition Units with input/output cards
 - CERN PLCs (Schneider)

Main servers

Software

- Server systems
 - UNIX SCADA for electrical distribution
 - Databases
 - Oracle for logging
 - Ingres for configuration
 - Services
 - Web access for logging (Apache/PHP)
- Data acquisition systems
 - PC SCADA for electrical equipment and substation automation
 - Drivers adapted for CERN electrical equipment (+20 protocols!)
- Integration with CERN data exchange
 - DDAL TDS equipment controller
Substation data acquisition

Communication - exchange

- TDS integration
 - Standard DDAL API
- Database servers
 - Oracle ODBC drivers
- Distributed data acquisition systems
 - IEC standard protocol over TCP/IP
- Field buses
 - Standard field buses: Modbus/JBUS (RS-485 support)
 - Dedicated Field bus for I/O interfaces: LonWorks
 - Some electrical equipment with private “field buses”!
 - Software gateways possible in special cases

Infrastructure requirements

- Reliable power supply
 - 48V for substation equipment (data acquisition)
 - UPS for communication equipment
 - UPS for servers and computing infrastructure
- Communications network
 - High availability
 - Secure networks
 - No specific bandwidth requirement

Planning - milestones

- SPS
 - Partial installation (no complete SPS renovation yet)
 - BA4 completed, BA7 planned for 2003
 - SPS electrical renovation not yet funded
- LHC
 - Surface buildings completed by September 2003
 - Underground not yet started – limited installation
 - Some LEP equipment still operational in alcoves!
- Meyrin
 - Planned for shutdown 2003-2004
Outstanding issues

- Experimental control and supervision
 - Expensive revamping of LEP distribution
 - Expensive controls cabling for supervision
 - Project under way with first experiment
- LHC supervision
 - Data exchange infrastructure in place but...
 - Exact configuration of data required not fixed
 - Need to validate implementation (speed, etc.)
- LHC data logging
 - Exact data definition not yet finalized

Conclusion

- Progress
 - Electrical equipment defined, in installation
 - Controls hardware and infrastructure in place
 - Controls software still open for development
 - Operational experience already accumulated
 - Potential outstanding issues to fix before 2005
- More information?
 - http://st-div.web.cern.ch/st-div/groups/el/el.htm

Last slide

Thank you!
- More information?
- Questions?
- Or go directly to
 - http://st-div.web.cern.ch/st-div/groups/el/el.htm