Post-Mortem

J. Wenninger AB/OP

- Recap on PM
- PM event builder
- PM event analysis
- PM data storage

... with a look over the Accelerator / Research sector fence!

Motivation: the LEP2 example

The LEP2 performance depended largely on the RF system:

→ it was important to know about 'weak' RF components (cavities)!

When a RF unit tripped

→ beam loss.
→ sudden change of beam loading in all units.
→ more RF units trip!

It proved impossible to identify the unit that first tripped using conventional logging and monitoring (fast time scales).

For the last LEP run, the RF group built a small post-mortem system that could timestamp RF trips and beam loss with ~ few \(\mu \text{sec} \) resolution (GPS):

- That system proved to be a crucial diagnostics and greatly enhanced the LEP efficiency for the last 'Higgs-hunt' run!

LHC stored energy: new territory

Stored magnetic energy: 10.8 GJ

Stored beam energy: 0.35 GJ/beam

factor 100

Energy extraction

- Sufficient to melt 500 kg of Cu
- Equivalent to
 - 90 kg of TNT
 - 25 kg of sugar

The beam dump is the only component able to absorb the full 7 TeV beam.

The LHC must be protected against damage due to uncontrolled energy release of any form!

The post-mortem system

- The LHC will be protected by over 10000 interlock channels:
 - Thousands of quench detectors
 - 3000 beam loss monitors
 - …
- The LHC has a minimum cycle of ~ 2 hours (7 TeV back to 7 TeV)
 → learning by trial and error is very inefficient!

For that reason we need a DIAGNOSTICS tool:

- To understand when, why and how interlocks are triggered.
- To determine the initial cause of a 'problem', to adjust interlock thresholds… we must be able to see the last moments before the beam disappears in the dump block!

This tool is the Post-mortem system!
Post-mortem ingredients

- Every LHC equipment and diagnostics system must implement a circular PM buffer of appropriate depth holding the latest data (example: last 1000 turns for beam instruments, ...).
- Data must be time-stamped to ~ ms or µs depending on type.
- The PM buffer must be frozen by an external post-mortem event or by self-triggering.
- The PM data must be combined to form the post-mortem event data: size ~ few Gbytes.
- The PM data must be automatically analyzed. ‘Digested’ information must be generated for operations.
- The PM data must be stored – the most relevant data must be stored for the lifetime of the LHC. Some of it will be important for INB.

Post-mortem data

- Data sent to the PM system should be self-describing.
- Sharing the same data format with the logging system is probably a good idea.
- The LHC experiments use a data format provided by the root C++ package (compressed & system independent encoding).
- An ‘event builder’ is required to:
 - assemble the data (push or pull?).
 - assign it a unique PM event number (key).
 - verify data integrity and completeness.
 - store the data on disk for immediate analysis.
 - possibly send it to long term storage.

PM operation modes

The post-mortem system has 2 basic operation ‘modes’.

Operation without beam:
- Each powering sub-sector must be handled as an entity that can have an abort independently of all other sectors.
- Main systems: power converters, magnet protection, interlocks (too a lesser extend vacuum & cryogenics).
- In this mode the systems are self-triggering.

Operation with beam:
- The machine has to be considered as a whole.
- All equipment systems are involved.
- PM is triggered over the interlock system (most likely timing event).

PM, Logging, Alarms

PM interacts with logging, alarms and settings control.
Data Storage

- I presume that regular LHC logging goes to ORACLE...

- All LHC experiments write their RAW data to tapes:
 - Tape handling is done via CASTOR, a disk pool manager coupled to tape storage. Handling of tapes is transparent to the user who sees a UNIX-like file system. Data is accessed over disk cache.
 - Typical tapes hold ~ 100 GB – not really competitive compared to disks, but simpler to handle (robots)!

- Both solutions could be OK for long term storage of PM data, but:
 We need intelligent storage of complex data like the last 1000 beam turns for various instruments in we use ORACLE.

- To improve performance for analysis of PM events just after an abort ➔ run from a local disk!

PM event storage

- The RAW data volumes for each PM event are very large:
 - some GBytes!
 - depends strongly on amount of bunch-bunch and turn-by-turn info (RF is the dominant client!).

- The experiments have much smaller event sizes – but they only record ‘useful’ info:
 - channels without signals (hits) are not included.

- We must at some stage decide if we archive ALL raw data.

- We could envisage to store in easily accessible form (ORACLE DB or disk) only useful / compressed information.
 - For example: for a PC that had no problem, keep only state + min/average/max current (set & read), instead of the full data!
 …..
A Pb-Pb collision in ALICE

To extract any useful info, such a simple event display is not sufficient!

A reconstruction / analysis code is required to group detector signals into tracks, energy clusters and eventually reconstructed particles!

PM analysis

The situation for PM is similar to the experiments data:

- We want to find the relevant info in the big byte-mess!
- We must scan for faulty channels and states, summarize the beam evolution just before the abort (orbit change, beam loss evolution and location, loss rate change…)
- The summary info must be ‘presented’ to operations for guidance. The operators cannot be asked to browse the data with JAVA gulls!

A considerable and also complex effort: therefore …

- A modular design is needed, that can incorporate modules prepared by various people in a variety of languages (C, C++, JAVA….).
- The code must be able to evolve rapidly as experience is gained.
- It must be possible to re-run the analysis on past events.
- The output information must also be stored!!

PM analysis (cont’d)

Also:

- The data volumes are large and time counts. ‘Response’ within minutes please!!
- The code must be fast and so must be the I/O!

Finally:

- For the beam dumping system, a PM analysis is mandatory before any beam can be re-injected again into the ring.

Summary

- To operate the LHC efficiently we need a PM system.
- I predict that PM will be among the hottest stuff in the LHC!

- At the equipment level, work is ‘in progress’ – but we must get going soon with the higher level PM (data collection & analysis):
 - We need some help – volunteers are preferred!
 - A couple % of J. Wenninger and R. Lauckner is not sufficient in the longer term…

- Milestone # 1: sector commissioning in 2005!

More details on PM can be found in LHC Note 303.