LHC Analysis WG progress

- Preliminary Aims of LAWG:
 - Use Case operational scenarios to establish controls requirements
 - Target specific novel control infrastructure issues to establish requirements & possible solutions
 - Establish and confirm low level level functionality required of equipment by high level controls
- This talk
 - A word about responsibilities
 - How the LHC will be operated
 - Use Case
 - Control requirements
 - Logical architecture
 - Real time
 - Conclusions

LHC operations

Responsibilities - PCR

- Power On
- Monitor interlock system
- Monitor beam & power abort systems
- Prepare for access, give access, and access recovery
- Drive machine through operational cycle with beam and pick up the pieces
- Perform first pass post-mortem analysis
- Monitor multipoles factory, first pass diagnostics
- Monitoring vacuum, first pass diagnostics
- Monitoring transfer lines, injection steering.
- Communication with experiments

Responsibilities - CCR

Responsibilities - TCR

- Monitors and operates 24 hours a day, 365 days a year the entire technical infrastructure of CERN comprising
 - the electrical distribution network and energy consumption management
 - heating, cooling, ventilation and air conditioning equipment
 - safety installations, any other infrastructure equipment
 - control systems
- Calls for breakdown and stand-by services
- Troubleshooting coordination:
 - CERN specialist, subcontractors
 - TCR on site interventions

Baseline cycle

The baseline cycle - hiccups

- Abort
 - beam loss
 - in ramp: finish cycle, wait on flat top, normal cycle
 - in coast:
 - if longer that 30 minutes ramp down
 - if less than 30 minutes wait..
 - power abort recover, set minimum, re-cycle
 - quench ramp everything else down, wait at minimum, recycle when recovered.
- Access
 - at minimum, re-cycle when finished.
- Following cool-down
 - standard re-cycle
- Stop at Intermediate energy is anticipated

The pre-cycle

The Use Case challenge

The cycle

- Switch on
- Injection Setup
- Establish circulating beam
- Injection
- Injection Optimisation
- Prepare ramp
- Nominal snapback
- Ramp
- Programmed stop in ramp
- Squeeze
- Collide, Physics
- Luminosity optimisation
- Ramp down

+ exceptions and faults

Equipment and instrumentation

- Power converters
- RF
- Collimators
- TDI & TDE, Dumps
- Kickers
- Beam Instrumentation
- Multipoles Factory
- Interface to cryogenics & vacuum
- Interface to experiments

The control system

- Timing & Synchronisation
- Real-time
- Middleware
- Architecture

Pre-injection plateau

- Ramp down to ~ 600 A. Check that power converters have performed cycle down properly.
- Collimators out check
- TDI to parking check
- Kickers to standby
- Dumps active check
- Check kicker timing and BST.
- RF: 200 MHz, 400 MHz & transverse dampers:
 - → Set RF frequency to injection level, → Set the gain of the phase loop amplifier → Set the gain and time constant of the synchronization loop amplifier, → Close the phase loop around the VCO, → Switch the RF DRIVE ON, → Switch the phase loop to the cavity sum signal, → Reset the revolution frequency generator following reset of TTC
- Check: interlock system operational
- Check: magnet protection system
- Check: beam and power abort system operational.

Pre-injection plateau

- Power converters:
 - check state & tolerances
- Multipoles factory
 - check hardware
 - produce prediction of persistent current based on powering history, incorporate into settings
- SPS
 - Check synchronization. Foresee training sequence in SPS for a pulse or two on the LHC cycle, during this time synchronization can be established.
- Transfer lines
 - Pilots to TEDs, check converters, instrumentation, steering etc.

Injection plateau - before beam

- Power converters:
 - Verify that all power converters have reached the required current and are within tolerance.
 - Based on predictions from multipoles factory and history, correction will be sent to multipole correctors via real-time channel throughout duration of injection plateau. Check.
 - Horizontal orbit correctors will be driven to compensate b1 drift. (via a knob)
- Multipoles factory
 - Start tracking and correcting for drifts in b1, b2 and b3 (at least) via readings from the reference magnets (here we include Hall Probes etc.). Corrections via real-time channel.
- Online monitoring of other systems
 - collimators out, TDI parked, RF OK, etc...

Take Pilot I

- Issue injection request
 - before each injection, update the bucket selector and the phase of the 400 MHz sent to the SPS. (Bucket and ring ID required)
 - generate injection pulses for the kickers
 - generate injection pulses for BI
- Take PILOT into BLUE (or YELLOW) ring
- Low level RF synchronizes transfer
 - jump phase loop onto beam, switch synchro loop on
 - resynchronise the divider that provides the gating of the long. feedback input/out to act on the incoming batch only
 - function generator will raise and then lower gain of longitudinal feedback,

Take Pilot II

- If beam circulates carry on. If beam doesn't go to "Establish Circulating Beam".
- Measure (& correct if necessary):
 - transverse injection oscillations,
 - energy,
 - RF feedback,
 - Q, Q',
 - separation at IPs,
 - closed orbit.
- Adjust TDI with respect to closed orbit
- Adjust collimators with respect to closed orbit
- Operator will have ability to trim corresponding physics parameters (tune, chromaticity, orbit etc..)
 - Note: real-time correction of these parameter, use of corresponding actuators probably going on.

Beam size at collimators?

Effect of beta beating?

Local orbit feedback? 🚿

Emittance variations from SPS?

Injection...for example

Injection, for example...

B1 correction via orbit correctors

From this...

- Attempt to establish:
 - required high level functionality
 - control requirements of involved equipment
 - logical architecture
 - novel requirements of control system architecture
 - misconceptions
 - and unanswered questions

1. High level functionality

- Measure and correct
 - Threading, trajectory oscillations, steering, orbit from pilots, adjustment of TDI and collimators, matching, screens, measurement of optics parameters
 - closed orbit of both rings, global & local correction etc. etc.
 - signals such as BCT, lifetimes, beam loss, luminosity, beam sizes
 - measurements of tune & chromaticity
- Control Set, commands, functions: RF, dampers, power converters, kickers, dumps, collimators, TDI, etc. etc.
- Feedback to provide stability of machine parameters, Track Q, Q', energy during injection plateau, for example
- Feed-forward from multipoles factory and experience
- Tools Correlations, scans, Coupling between control and beam instrumentation e.g. synchronised acquisitions. Trims, sequencer, fixed displays.
- Data management control of ramp & squeeze settings, history, rollback
- Logging & post-mortem analysis for post-run, post-MD analysis and statistics
- Diagnostics, On-line optics model, Re-boot facility

2. Equipment - high level control

- Collimators:
 - asynchronous set, 1 mm step size,
 - synchronized movement between primary and secondary collimators,
 - timing, functions (of some sort) will need to track squeeze
 - local orbit feedback required.
- RF (NB: fast digital control at the low level)
 - command-response,

- functions invoked by millisecond timing: damper gating, gain

- ramping (200 MHz)
- lots of slow timing requirements
- setting management

2. Equipment - high level control

- Power Converters
 - asynchronous set (different methods),
 - synchronous set millisecond timing
 - command-response,
 - functions (number of points, splines, download, deltas v. absolute)
 - slow timing,

Novel Control infrastructure

- Timing: under auspices of TIWG, hopefully LHC requirements are more-or-less elucidated. See Gary's talk...
- Middleware:
 - CORBA III Orb,
 - Servers written in C++,
 - GUI's in VB/DELPHI with CORBA/COM fast bridging technology.
 - Use Oracle V8 DB,
 - will need orb with event service.
- Real Time: →

RT requirements II

		Acquisition	Actuators
Reference magnets	3 - 10 Hz		Trim quads, sextupoles
Global orbit feedback	1 Hz	As below	2*500
Chromaticity	1 Hz	Single instrument	Trim sextupoles
Tune feedback	10 Hz	Single instrument	Trim quad PC
Beam loss display + poss input	10 Hz	250 crates	N/A
to feedback system		130 Kbytes/s	
Real-time knobs	10 Hz	Real-time display	1 to 500
Global orbit acquisition	10 Hz	250 crates	N/A
		200 Kbytes/s	
Local orbit correction &	Max	~10 PUs	~5 correctors
acquisition	100Hz		

Response limited by PC/magnet

Latencies

Acquisition	10 ms	
Network	5 ms	
Collection of data	5 ms	
Alogrithm	10 ms	
Broadcast to gateway	5 ms	
Transport over FIP	0 - 10 ms	
Power Converter	10 ms	
Magnet	10 ms	

Keep your hats on, numbers under discussion

Which should allow us to suppress beam perturbations at a maximum of 1 Hz i.e. good enough for snapback, decay etc...

Real time

Multiple inputs - single output

Essential challenge of many sub-systems hitting common actuators Not to mention the problem of hysteresis loop crossing

RT - where do we go from here?

- Have established
 - the requirements,
 - the need for a coherent approach to RT use,
 - and are in the process of trying to understand the detailed issues.
- Need to:
 - establish a RT framework with the help of a consultant/expert on RT control engineering
 - develop a rigorous model of the plant dynamics
 - develop the logical architecture
 - request a dedicated Gigabit Ethernet

Objectives for the year

- Framework established. Use Case is painstaking and meetingcentric, but no real alternative if we really want to gain understanding.
- Need to continue anticipating the choices that will effect our ability to control the machine:
 - real-time good progress made
 - timing in the bag
 - middleware requirements to be established
- Need to make sure that low level design choices match high level requirements,
 - e.g. Review low-level Power converter functionality in the light of what we've uncovered.
- Finish a first pass Use Case of all relevant equipment through the complete cycle (plus logical architecture) and publish.
- Look at interfaces to other systems
- Capturing on the Web for the moment
 - Rational Rose, UML, DSDM/ODP methodology and some Project Management method will eventually be used. Cough.

Acknowledgements

- LAWG:
 - Oliver Bruening, Andy Butterworth, Marc Vanden Eynden, Joerg Wenninger, Mike Lamont
- Real Time:
 - Michel Jonker, Quentin King, Andy Butterworth, Thijs Wijnands, Pedro Ribeiro, Jean-Jacques Gras, Pal Anderssen, Olav Berrig, Joerg Wenninger
- Brains:
 - Philippe Baudrenghien, Etienne Carlier, Bernard Jeanneret, Rudiger Schmidt, Luca Bottura, Louis Walckiers, Laurent Deniau, Jean-Jacques Gras, Oliver Bruening
- Details
 - http://lamontm.home.cern.ch/lamontm/lawg/Lawghome.htm