Analog Acquisition - Infrastructure

General Purpose Analog Signal Observation in LHC

- § Signal Types and Numbers RF & BT
- § LHC Era Common solutions across equipment, PS SPS and LHC
 - Analog signal transmission equipment (Fibres)
 - Acquisition systems : Summary of discussions:
 - § Existing nAos system
 - § Requirements
 - § hardware,
 - § Software
 - § Timing
 - § Post mortem
- § SPS Extraction (TT40) Requirements (E. Carlier)
- § How to proceed?

Analog Signals - LHC Extraction Kicker MKD (Dump)

	LHC Extraction Kicker - MKD - Analog Signals Summary - 18/12/01										
#	Source	Function	Physical Quantity	Name	Sensor Type	Magnitude Scale (V)	Bandwidth (MHz)	Sampling Rate (Ms/s)		Qty. per Unit	Qty. per Kicker
1	Generator	Diag.	Current (princ.)	lp	CT		50	200		2	30
2	Generator	Diag.	Current (comp.)	lc	CT		50	200		2	30
	Generator	Diag.	Current (free wheel)		CT		50	200		2	30
3	Generator	Diag.	Voltage (princ.)		VD 1:1000		20	100		2	30
4	Generator	Diag.	Voltage (comp)		VD 1:100		20	100		2	30
5	Re-trigger	Intl.	Pulse				50	200		4	60
10											
11	Magnet	Diag.	Current		CT		200	500		2	30
12									Total		240
13											
14											
15	General trigger	Trigger	Voltage							2	2
16	Trigger pulse	Trigger	Voltage							2	60
17									Total		62

Analog Signals - LHC Injection Kicker MKI

	LHC Injection Kicker - MKI - Analog Signals Summary - 14/08/01										
#	Source	Function	Physical Quantity	Name	Sensor Type	Magnitude Scale (V)	Bandwidth (MHz)	Sampling Rate (Ms/s)	Qty. per RCPS	Qty. per PFN	Qty. per Kicker
1	RCPS	Diag.	Voltage (Primary)	Up	VD 1:300	10V=>3KV	50	200	1		2
2	RCPS	Diag.	Current (Primary)	I _p	CT	5mV/A	50	200	1		2
3	RCPS	Diag.	Uanode Thy.		VD 1:300		15	100	1		2
4	RCPS	Diag.	Ucathode Thy.		VD 1:300		15	100	1		2
5	Dump Switch	Diag.	Voltage (PFN)	Upfn	VD 1:6000	10V=>60KV	50	200		1	4
6	Dump Switch	Diag.	Current (Thyratron)	Ithy	CT		50	200		1	4
7	TDR	Diag.	Voltage	U _{tdr}	VD 1:x	15V=>30KV	50	200		1	4
8	Main Switch	Diag.	Current (Thyratron)	I _{thy}	CT		50	200		1	4
9	TMR	Diag.	Voltage	Utmr	VD 1:x	15V=>30KV	200	500		1	4
10											
11	Magnet	Diagnose	Voltage		PU Capa.					2	8
12									Total		36
13											
14											
15	Fast prepulse	Trigger	Voltage								1
16	RC Thy. Trigger	Trigger	Voltage							1	2
17	Dump Thy.Trigger	Trigger	Voltage							1	4
18	Main Thy. Trigger	Trigger	Voltage							1	4
19	Main Thy.Trigger	Trigger	Voltage							1	4
20									Total		15

Analog Signals - LHC RF Systems

	Fi	Frequency range			Digital Acquisition		
	DC to	DC to	0.5/1.0	Sampling	Recording	Treatment	
Beam Control	10 kHz	40 MHz	GHz		Depth		
Detected Total Accelerating voltage amplitude	1			1 turn			
Total 200 Mhz voltage amplitude/phase	2			1 turn			
Total 400 Mhz voltage amplitude/phase	2			1 turn			
Measured RF frequency (Digital)				1 turn			
Phase loop phase discriminator	1			1 turn			
Synchro loop phase discriminator	1			1 turn			
Radial position	1			1 turn			
Wideband longitudinal pickup (I bunch profile)			1	4 Gs/s			
Total Beam Control	8		1				
ACS Cavities:							
Cavity Antenna RF			8	2 Gs/s			
Cavity Antenna - Fast Detector (Tbunch)		8		25 ns			
Cavity Antenna - Slow Detector	8			1 ms			
Waveguide coupler - for/ref		16		25 ns			
Cavity voltage (vector demod: I and Q)		16		25 ns			
Drive in: (vector demod: I and Q)		16		25 ns			
Circulator in forward power	8			1 ms			
Cavity in forward power	8			1 ms			
Cavity in reverse power	8			1 ms			
Tuner position	8			1 ms			
Coupler position (400 MHz)	8			1 ms			
HOM coupler fundamental	32			1 ms		İ.	
Totals ACS	80	56	8				

Analog Signals - LHC RF Systems Contd.

Cavity Antenna RF			4	2 Gs/s		
Cavity Antenna - Fast Detector (Tbunch)		4		25 ns		
Cavity Antenna - Slow Detector	4			1 ms		
Waveguide coupler - for/ref		8				
Cavity voltage (vector demod: I and Q)		8		25 ns		
Drive in: (vector demod: I and Q)		8		25 ns		
Circulator in forward power	4			1 ms		
Cavity in forward power	4			1 ms		
Cavity in reverse power	4			1 ms		
Tuner position	4			1 ms		
Damping loop position (200 MHz)	4			1 ms		
Total ACN	24	28	4			
Transverse Dampers:						
Kicker Voltages		8		40 MHz	1000 turns	
Driver Voltages		16		40 MHz	1000 turns	
Output from Digital Processing		4		40 MHz	1000 turns	
Pick-up		4		40 MHz	1000 turns	
Total Dampers		32				
Totals per Ring	112	116	13			
Total overall	224	232	26			

Numbers of Analog Signals - BT and RF

Frequencies => DC to RF in 3 Ranges:

Signal		BT (LHC)	RF (All)
0 - 10 kHz	DC		224
0 - 50 MHz	HF	242	232
10MHz - 1GHz	RF	34	26
Totals		276	482

Analog Signal Monitoring

- Direct 'real time' via cables or fibre optic links
 - (From underground areas to equipment control areas)
- Some commercial equipment, from different manufacturers has been evaluated RF, BI, BT.

For use in the frequency ranges of interest:

- RF links to 2 GHz
- $\,$ HF link to 10 MHz $\,$
- (LF multiplexed links 0 to 10 kHz)

Analog Acquisition systems

Want common solution in PS, SPS & LHC - across equipment

- => Various discussions with specialists and users in PS SL LHC
 on requirements and solutions "Brainstorming Session"
 (write-up on Web)
 - * nAos system
 - * Acquisition hardware choice
 - * Timing requirements
 - * Software implementations choices
 - * Post Mortem
 - * How to proceed ?

nAos System

General Purpose Observation System

=> Signal selection, trigger selection, visualization, archiving

- PS 25 VXI crates with HP 'scopes & 2 types of multiplexer modules
- SPS 4 crates monitoring over 100 signals from RF damper and kickers
- VxWorks in acquisition crates, Client 'Virtual Scope' developed in Motif and runs on Linux
- System appreciated by all its users
- <u>However</u>
 - Lack of modularity in the software is a problem (=>OASIS)
 - Main problem is obsolescence of VXI hardware
- Solutions needed urgently (LEIR, SPS extraction TT40)

Analog acquisition - Hardware

Acquisition Modules

Slow systems: Many suppliers Fast systems: Acquiris, (Widely used at CERN) PS-BD, SL-RF, SL-BT GaGe - recent presentation of future products

• Platforms

VME	Widely used at CERN- very long term commercial future ?
VXI	(Becoming) Extinct - Main problem for nAos
PCI	Most widely used, size & connectivity are problems ?
CPCI PXI	Good size (3U/6U) & connectics, software compatible with PCI NI (LabVIEW) CPCI with extensions (3U height only but fits in 6U CPCI)

! General agreement that CPCI is the best choice !

Analog acquisition - Timing

- Development of common hardware in CPCI
 - TG1 timing module in PS-CO
 - RF timing module in SL-HRF
 - Time-stamping hardware?
 - Other for synchronization, delays ??

Analog Acquisition - Software

LabVIEW =>

- Quick realization of stand-alone system, using graphic building blocks (Vis)
- Standard signal treatment tools, Easy hardware debugging etc,
- Heavy in larger systems.=> VIs increase rapidly in numbers
- Problems with integration with other systems,
- Need special implementation of external functions e.g. equipment setting, timing control

LHC Analog Signals - Software

Custom =>

Still Using <u>COTS</u> Solutions (<u>Commercial/CERN</u>) as far as possible 3 Layers:

- Local acquisition server
 - LabVIEW, 'C', Windows ...
- Remote clients (Data Presentation)
 - LabVIEW
 - Own GUI & Dataviewer
- Communication / Middleware
 - CMW OPC

Choice of OS =>

Windows - better COTS support ? Linux - CERN expertise stronger ?

! General agreement more difficult to reach !

SPS Extraction (TT40) Requirements (E. Carlier)

	SPS Extraction	LHC Injection	LHC Extraction
	MKE TT60 TT40	МКТ TI8 TI2	MKD RA63 RA 67
Observation	\checkmark	\checkmark	\checkmark
Post-mortem (incl. Previous pulse)	\checkmark	\checkmark	\checkmark
Equipment control		\checkmark	\checkmark

- Observation
 - Triggering via fast prepulses conditioned by timing
 Multiplexing of signals
- Equipment Control Functionality
 Pulse to pulse regulation

General Purpose Observation and PM systems

Post Mortem: - Buffer freeze on timing event

- Same hardware - Do both PM and observation with the same ?

<u>BUT</u>

- PM Settings must remain fixed, although probably automatically updated for best observation
- Use of common equipment for PM and observation would need case by case study.
 - Data could be systematically stored in separate buffers
 - Should provide PM trigger (and others + Time-stamping) for 'unanticipated' needs - Allowing observation system to behave as PM if needed
- Should make PM acquisition data available on any trigger request

How to proceed?

- Close collaboration on urgent projects
- 1. PS LEIR acquisition system
- 2. SPS RF Fast Mountain Range Display
- 3. SPS extraction (EA and LHC) TT40
- ⇒ Coordination of software developments
 => common solutions
- Analysis of individual systems
 - Observation, control, post mortem, acquisition points
- Agreement on standard acquisition hardware modules/multiplexers

- Post Mortem
 - Visualisation of previous pulse, logging

The End

GP Signal Acquisition Triggering, Timing and Synchronization

Triggering:

GM Timing Event driven Hard-Wired input - as Beam or Power Permit for Post Mortem BST message ?

Fast Timing - if needed

RF bucket timing (400 & 200MHz) BST (40MHz)

Synchronization: GPS - (IRIG-B) => several µs

Can satisfy all requirements with above?