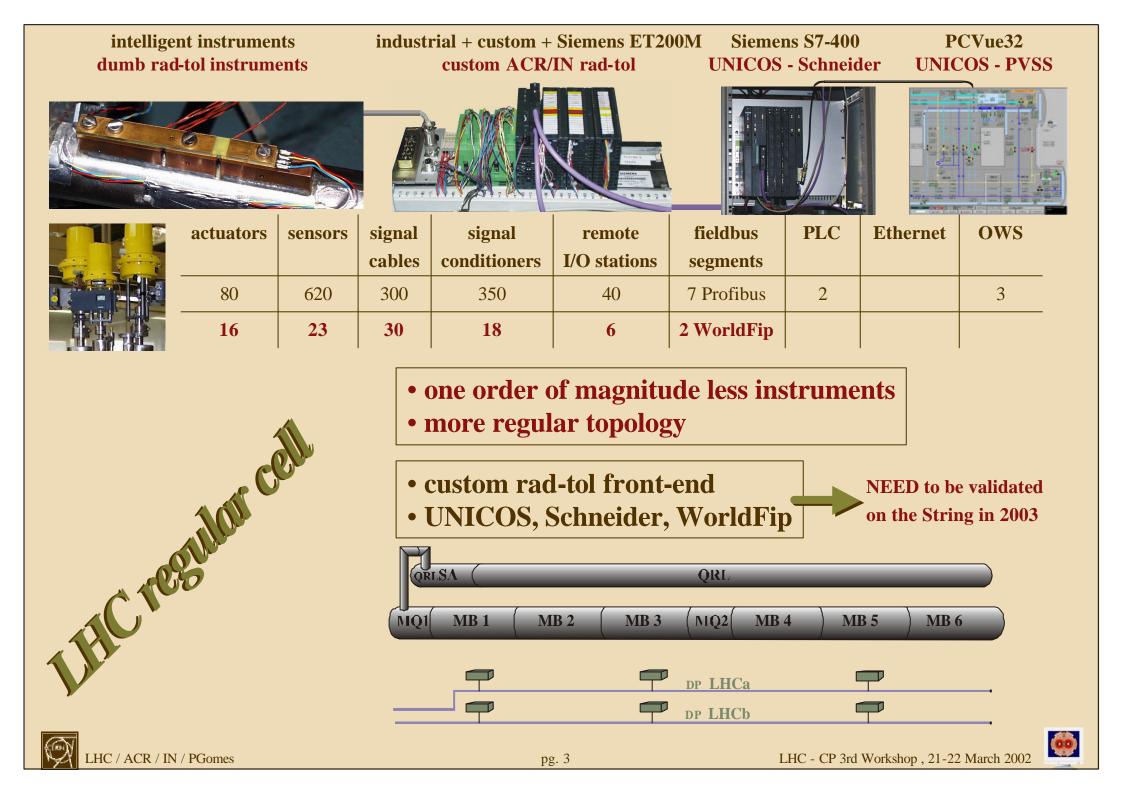
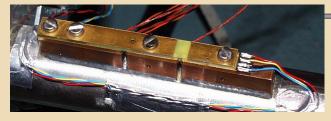

experience with the **Cryogenic Instrumentation and Controls** of String 2


Paulo Gomes for the ACR-IN team

with the precious contributions of D. Bozzini, L. Serio, his Operators team, IAS, BARC, and many others...



- **String2** layout
- LHC regular cell P
- commissioning check points
- the commissioning (F
- the thermometers issue P
- other instruments
- LHC æ

ACR / IN -

others

signal cables

wire damaged swapped sensors pin-out

sensors

choice of sensor type / range wrong info on TT type (CX, Pt100, CRT) correspondence SN -- Tag swapped SN unknown SN unreported change of SN late info on SN mechanical mounting wire/ block thermalisation electrical mounting electromagnetic noise sensor / wire damaged pin-out

signal conditioners

choice of conditioner type / range calibration of conditioner pin-out

remote I/O stations

Profibus address I/O module type pin-out

OWS

synoptic layout mapping of PLC addresses interlocks, alarms, process

PLC P Profibus addresses in I/O-mem mapping addresses communication with ABB logic of interlocks, alarms, pr

communication with ABB logic of interlocks, alarms, process sensor calibration functions correspondence SN -- Tag mathematical function integrity

Ethernet IP addresses, routers

Profibus networks

bus terminations contacts inside connectors

1. Ethernet 2 PLC / EWS / OWS

- 2. Profibus all remote I/O stations accessible (cable continuity, Profibus address) all I/O modules well configured, in each station
- 3. databases PLC & OWS synchronised (by forcing values on PLC) all parameters & values for sensors / actuators all parameters & thresholds for interlocks / alarms / process
- 4. once SPV application on the OWS is reliable,

qualitative inspection of sensor values (@ room T, P) → identification of completely wrong values
wrong pinout / broken sensor, wire, conditioner
CX / Pt100 identification error
wrong range settings

instrumentation commissioning needs PLC / OWS / ethernet running

- **5. first set of simple/obvious corrections**
- 6. quantitative/fine inspection of values (@ nominal T, P, dT_gradients) swapped, inaccurate, non-identified sensors
- 7. if problem follow signal chain (hardware + software) connector on machine / connector on rack / connector on I/O module PLC physical value / PLC engineering value / OWS database

NEED access to LAN in LHC tunnel

the thermometers issue - identification (440 TT)

CEPNIN

29

30

2037.023

2249.056

2302.064

6.695

6.171

6.064

17.037

18.394

18.733

10

10

10

61 17091.348

62 20483.872

63 23876.396

		K.	IMGC / To / D Ichim LHC / ACR / IN / PGomes, ChBalle			Environement: Current: Temperature Range:			Vacuum D		
				LHC/ACR/IN	I/PGome	es, ChBalle		Temperature	Range:		1.6K295.7K
		CX_LS	X08573	DFBS_TT400					22-Aug-01	DB	512
		index	R [Ohm]	т (к)	I [mA]	range_bits	index	R [Ohm]	т (к)	I [mA]	range_bits
		0	53.637	295.154	7.433	11	32	2355.072	6.041	19.072	10
		1	56.989		7.647	11	33		5.763	19.751	10
		2	60.341	258.324	7.862	11	34		5.425	5.711	00
		3	67.046		8.291	11	35		5.132	5.846	00
		4	70.398		8.505	11	36		4.880	5.982	00
		5	73.751		8.720	11	37		4.661	6.118	00
		t t	80.455		9.149	11	38		4.470	6.254	00
			87.160		9.578	11	39		4.298	6.389	00
			93.864 100.569		10.007 10.436	11	40	4157.350	4.148 4.010	6.525 6.661	00
		10			10.436	11	41		3.885	6.796	00
		11			11.724	11	42		3.670	7.068	00
		12			12.239	11	43		3.575	7.204	00
	300 D(400	12			12.582	11	45		3.542	7.271	00
Γ with SAME transfer function	300 Pt100	14			12.663	11	46		3,482	7.339	00
		15		97.728	13.440	11	47		3,194	7.882	00
	140 0	16		88.900	14.298	11	48		2.973	8.425	00
Γ with INDIVIDUAL transfer function	140 Cernox	17	234.745	59.251	19.024	11	49	7761.907	2.797	8.968	00
		18	340.761	33.175	6.181	10	50	8185.973	2.723	9.239	00
		19	446.777	32.901	6.859	10	51	8398.005	2.686	9.375	00
		20			7.538	10	52		2.672	9.443	00
		21			8.895	10	53		2.652	9.510	00
		22			9.573	10	54		2.530	10.053	00
		23			10.252	10	55		2.426	10.596	00
		24			11.609	10	56		2.336	11.139	00
		- 25	1400.925		12.966	10	57		2.257	11.682	00
		26			13.644	10	58		2.188	12.224	00
		27	1612.957	8.134	14.323	10	59		2.124	12.767	00
		28	1824.990) 7.301	15.680	10	60	15395.086	2.017	13.853	00

each and every Cernox must be :

UNAMBIGUOUSLY identified

IN TIME for producing the corresponding PLC interpolation table

enormous effort to get IDs from the responsibles of every system not always correct at the first iteration !!!

pg. 6

NEED much more DISCIPLINE from the TT users

TT

ТТ

SIEMENS S7

R-T-I table

CX (Cernox Resistance Thermometer)

1.927

1.787

1.682

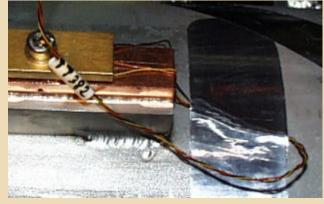
14 938

17,110

19.281

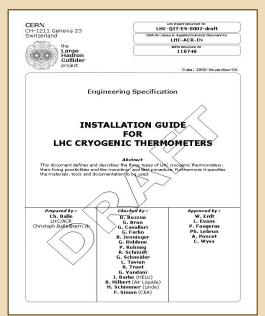
00

00


00

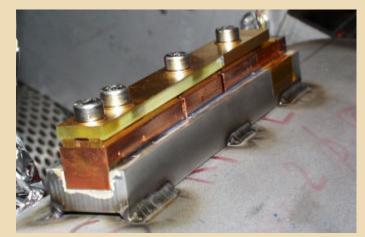
53 37 Ohm

R at Room Temperature


the thermometers issue - installation

wires not protected against sharp edge

dangling and stretched wires


the specs were not respected (materials, mounting, wiring)

SOME have been repaired

others ... nobody has a clue on how they are mounted !!!

cooper wires instead of manganin wires

point welding of support

MUST users take photos of every TT ?

the thermometers issue - Current Leads (200 TT)

	all 38 CL
100%	in every CL
	TT type
>10%	>10 TT
21070	>10 TT

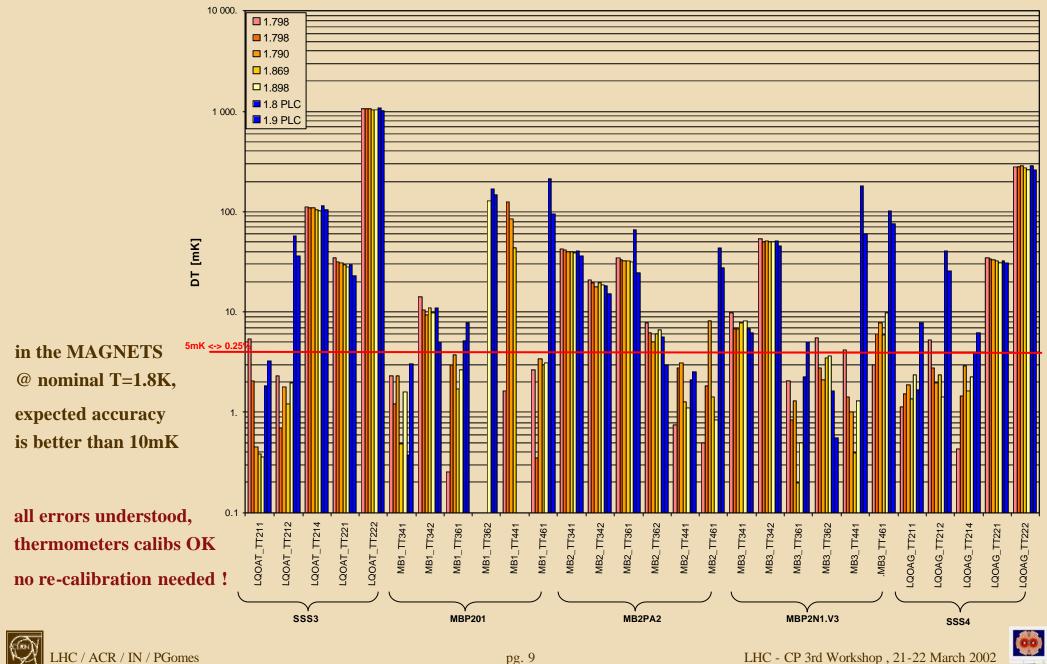
some changed from CX to Pt100 lost broken wires

numbered in reverse order

circular permutation of the 6 TT

bad documentation

quality assurance ?


00A TT					DFI	B 600A the	rmometers	<u>.</u>				
	DFLB 01	DFLB 02	DFLB 03	DFLB 04	DFLB 05	DFLB 06	DFLB 07	DFLB 08	DFLB 09	DFLB 10	DFLB 11	DFLB 12
TT 901					310.50 K		295.43 K		304.29 K	285.90 K	305.07 K	304.51 K
TT 902					276.70 K		272.27 K		290.99 K	274.59 K	287.56 K	286.67 K
TT 903					212.98 K		211.24 K		205.59 K	199.30 K	200.71 K	204.50 K
TT 904					121.05 K		121.26 K		104.18 K	103.97 K	103.67 K	105.72 K
TT 401					98.02 K				21 _{Felix} 4 K	100.58 K	31 <mark>Felix</mark> 1 K	100.48 K
TT 402					97.51 K		99.05 K		99.46 K	99.05 K	99.87 K	99.25 K
TT 001	x				47.72 K				56.91 K			
Iow precision >4.5K TOPSOE EURUS												
	DFLB 13	DFLB 14	DFLB 15	DFLB 16	DFLB 17	DFLB 18	DFLB 19	DFLB 20	DFLB 21	DFLB 22	DFLB 23	DFLB 24
TT 901	295.09 K	313.93 K	293.76 K	290.11 K	300.64 K	300.64 K	301.97 K	300.52 K	299.42 K	297.86 K	297.64 K	broken
TT 902	263.95 K	282.35 K	265.73 K	262.07 K	270.49 K	277.59 K	277.81 K	273.15 K	290.11 K	289.22 K	289.55 K	
TT 903	193.67 K	220.94 K	199.41 K	197.78 K	192.05 K	202.66 K	206.78 K	197.67 K	257.42 K	260.63 K	257.31 K	
TT 904	116.58 K	127.93 K	118.14 K	116.79 K	102.84 K	104.18 K	104.18 K	105.62 K	194.75 K	192.16 K	193.13 K	
TT 401	98.53 K	104.90 K	100.58 K	99.46 K	100.79 K	100.79 K	99.87 K	101.00 K	Felix ?	19 /Felix 7 K	1 <mark>€^{eli×}}7</mark> K	19 [;] Felix9 K
TT 402	99.97 K	104.18 K	100.07 K	98.74 K	99.97 K	99.87 K	99.76 K	100.07 K	broken	196.70 K	200.17 K	199.95 K
TT 001	10.01 K				18.79 K				129.46 K			
		OXF	ORD		low precision >4.5	<mark>k</mark> AC	CEL		low precision >4.5	K EUF	ROPA	
	DFLB 25	DFLB 26	DFLB 27	DFLB 28	DFLB 29	DFLB 30	DFLB 31	DFLB 32				
TT 901	298.31 K	299.97 K	305.07 K	299.53 K	288.67 K	296.54 K	292.10 K	292.88 K		600	A LEADS	
FT 902	275.59 K	278.14 K	278.36 K	279.47 K	291.10 K	293.43 K	289.89 K	290.44 K			A LEADS	
TT 903	190.22 K	201.36 K	197.13 K	200.71 K	219.52 K	227.61 K	219.74 K	230.46 K		DFLB01 F	T711 -0.119) g/s
TT 904	116.89 K			109.85 K	103.97 K	102.95 K	103.36 K	103.36 K		DFLB02 F	T711 0.001	g/s
TT 401	98.74 K	100.58 K	100.58 K	100.79 K	Felix ?	Felix ?	101.30 K	101.82 K			T711 0.001	ale
TT 402	97.72 K	99.56 K	100.07 K	100.07 K	99.97 K	99.76 K	99.87 K	100.28 K		DECDUSE	0.001	9/5
TT 001	13.52 K				?							
	low precision >4.5	< FU	UI		low precision >4.5	K BI	cc					

		DFB1	3kA thermome	eters		
	DFLA 01	DFLA 02	DFLA 03 Pui	DFLA 04	DFLA 05	DFLA 06
TT 901	296.76 K	295.09 K	311.94 K	305.51 K	276.70 K	275.70 K
TT 902	213.20 K	211.24 K	229.03 K	233.42 K	196.16 K	202,66 K
TT 903	127.51 K	126.47 K	113.26 K	108.51 K	105.45 K	114.50 K
TT 904	54.90 K	53.97 K	43.16 K	41.78 K	52.54 K	56.06 K
TT-401	50.22 K	lost	lost	40.80 K	52.78 K	55,71 K
TT 402	50.10 K	49.97 K	40.09 K	40.09 K	64.32 K	55.02 K
TT 905	13.93 K	13.95 K	4.46 K	4.45 K	lost ?	kost?
TT 001		5.19 K		20.77 K		11.21 K
TCV700	73.69 %	79.11%	66.83 %	73.43 %	85.00 %	77.00 %
FT 711	0.302 g/s	0.319 g/s	0.225 g/s	0.240 g/s	0.351 g/s	0.325 g/s
						1

LHC / ACR / IN / PGomes

the thermometers issue - accuracy (28 TT)

pg. 9

the thermometers issue - magnets (28 TT)

MQ1 / SSS3:

1/3	1 TTcm	bad calib of unknown origin	100 mK
2/2	1 TTvac	not perfect mounting	30 mK
	1 TTvac	Cu wires + 10cm inox	1 000 mK
	1 TT	to gnd	~

MB1 / MBP2O1:						
2/2	2 TTcm	lost on the Bench	Х			
	1 TTcm	replaced	\checkmark			
1/4	1 TTvac	broken wires	~			

	MQ2 / SSS4:		
2/3	2 TTcm	swapped	\checkmark
	1 TTvac	not perfect mounting	30 mK
2/2	1 TTvac	10cm inox	300 mK
	3 TT	broken wires	~
	2 TT	reversed wires	~
	1 TT	grounded wires	~

	MB2 / M	BP2A2 :		MB4 / A001_2 :				
2/4	2 TTvac	not perfect mounting	40 mK	100%	1 TTcm	damaged		

	MB3 / MBP2A1s:						
2/2	2 TTcm	damaged on the Bench	~				
1/4	1 TTvac	not perfect mounting	50 mK				
	1 TT	broken wires	~				
	1 TT	reversed wires	~				

....

the thermometers issue - let's be serious!

too many

broken / grounded wires
swapped sensors / wires
re-installed sensors
lost sensors (during Bench tests ?)

most of them repaired (but degraded accuracy)

risk of damage

too long time to

repair

identify

- > ACR/IN should not supply TT without knowing their exact <u>destination</u>
- > users must strictly follow <u>installation guide</u>
- > users should produce <u>accurate documentation</u> on location, pin-out, follow-up
- > users should <u>check integrity</u> at all phases of assembly (traveler doc)
- > ACR/IN has no resources to <u>inspect</u> all systems before closure !
- > should users take <u>photos</u> of every TT ?

1 PT 3 LT (LHe wetting indicators) lost in MB1 / MBP2O1 grounded wires

1 EH

lost in MB1 / MBP2O1

3/10 intelligent valve positioners

lost firmware config → card replacement

.....

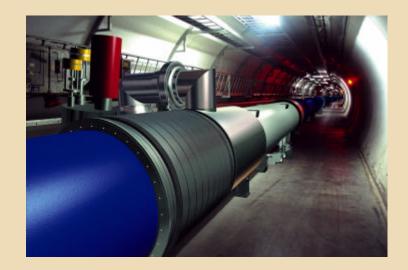
many unexpected problems

3 months to commission only the cooldown related instruments

Operator and Engineering WS next to the plant

NEED access to LAN in LHC tunnel

2 more months commissioning instruments & control for nominal conditions (T, P, I) 2.5 more months still hunting for bad TT (not yet finished !)



the positive note:

we managed to always be on time for the milestones (also thanks to mechanical assembly delays ...)

and for the LHC ?

custom rad-tol front-end, WorldFip, Schneider, UNICOS NEED to be validated on the String in 2003

commissioning time MUST not be neglected !!

NEED access to LAN in LHC tunnel for commissioning & maintenance

Iet's be more serious about the expensive instruments we stuff into the machine !!

