

ST-EL

Electrical Power and Distribution Group

ST-EL-CO

Electrical Engineering Group Controls Section S. Poulsen

11 June 2003 ST-EL Søren Poulsen

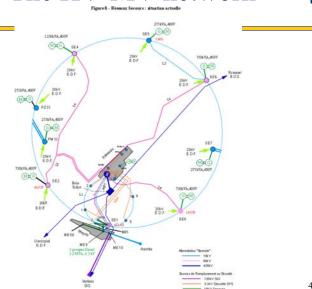
Overview

2

•The process

- •Major user requirements
- Architecture
- Major technical choices
- Infrastructure requirements
 - -location
 - -technical services
 - -control system services
 - -communications
- Plans for installation and commissioning
- Milestones for the work
- Conclusion

11 June 2003 ST-EL Søren Poulsen


The electrical network

- •Substations, distribution and power lines
 - -HV substations
 - -MV substations
 - -LV distribution systems
 - -The power lines connecting them
- •The equipment
 - -Breakers on all voltage levels
 - -Transformers on all voltage levels
 - -UPS systems
 - -Battery chargers
 - -Process control devices, etc., etc.
- •The dimension
 - -Lots of equipment...
 - -Yearly consumption: 1000 GWh
- Process variables
 - -100000 input channels

11 June 2003

The HV-MV network

11 June 2003 ST-EL Søren Poulsen

Some user requirements...

•Remote monitoring of equipment states

- -Status lists of electrical equipment
- -Synoptic diagrams single line diagrams
- -Alarm lists
- Data recording for analysis
 - -Events, status changes
 - -measurement states
- •Process control (local or centralized)
 - -Automatic procedures via standard languages
 - -High-level procedures without programming

11 June 2003 ST-EL Søren Poulsen

Architecture

Centralized

- -SCADA applications
- -Configuration and logging databases
- -Web services

Distributed

- -Data acquisition interfaces (front ends)
- -Serial lines to equipment field-buses
- •Electronic equipment interfaces
 - -Digital input
 - -Analogue input via transducers (limited usage)
 - -Output

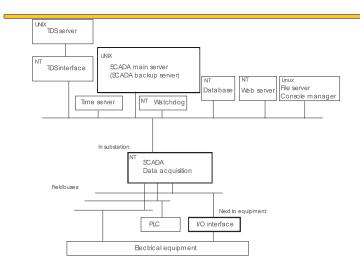
11 June 2003 ST-EL Søren Poulsen 6

Integration

•CERN data exchange

- -Follows ST divisional principles
- -Centralized interface via TDS
- -Data types: States, measurements, CAS alarms, output

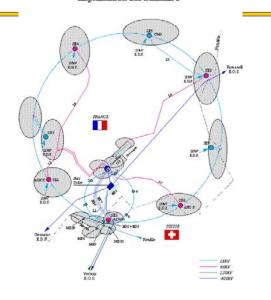
Communication and networks


- -Technical (services) network (128.142...) essential!
- -Dedicated optical lines to critical equipment

•Terminals/User interfaces

- -X terminals (substations, TCR, offices, BAs)
- -New SPS PC terminals
- -Web interface

Architecture and integration


11 June 2003 ST-EL Søren Poulsen

11 June 2003

Data acquisition - localization

Implantation des Bushian's

Hardware and OS

•Server systems

S T E

- -HP (Digital, Compaq)
- -OS: Tru64 Unix
- Data acquisition
 - -Intel PC Industrial computer ("rugged") 48V DC (battery)
 - -OS: Windows NT
 - -AB/CO VME Front End for special purposes
 - -OS: LynxOS
- •Equipment interfaces
 - -Data Acquisition Units with input/output cards
 - -CERN PLCs (Schneider)

11 June 2003 ST-EL Søren Poulsen 10

Main servers

Software

- Server systems
 - -UNIX SCADA for electrical distribution
 - -Databases
 - •Oracle for logging
 - •Ingres for configuration
 - -Services
 - •Web access for logging (Apache/PHP)
- •Data acquisition systems
 - -PC SCADA for electrical equipment and substation automation
 - -Drivers adapted for CERN electrical equipment (+20 protocols!)
- •Integration with CERN data exchange
 - -DDAL TDS equipment controller

11 June 2003 11 11 June 2003 ST-EL Søren Poulsen 12

ST-EL-Group

11 June 2003

Substation data acquisition

Communication - exchange

•TDS integration

-Standard DDAL API

Database servers

-Oracle ODBC drivers

•Distributed data acquisition systems

-IEC standard protocol over TCP/IP

Field buses

-Standard field buses: Modbus/JBUS (RS-485 support)

-Dedicated Field bus for I/O interfaces: LonWorks

-Some electrical equipment with private "field buses"!

-Software gateways possible in special cases

11 June 2003 ST-EL Søren Poulsen 14

T-EL-Group

Infrastructure requirements

•Reliable power supply

-48V for substation equipment (data acquisition)

-UPS for communication equipment

-UPS for servers and computing infrastructure

Communications network

-High availability

-Secure networks

-No specific bandwidth requirement

Planning - milestones

•SPS

-Partial installation (no complete SPS renovation yet)

-BA4 completed, BA7 planned for 2003

-SPS electrical renovation not yet funded

•LHC

-Surface buildings completed by September 2003

-Underground not yet started - limited installation

-Some LEP equipment still operational in alcoves!

Meyrin

-Planned for shutdown 2003-2004

11 June 2003 ST-EL Søren Poulsen 15 11 June 2003 ST-EL Søren Poulsen 16

Outstanding issues

- •Experimental control and supervision
 - -Expensive revamping of LEP distribution
 - -Expensive controls cabling for supervision
 - -Project under way with first experiment
- •LHC supervision
 - -Data exchange infrastructure in place but...
 - -exact configuration of data required not fixed
 - -Need to validate implementation (speed, etc.)
- •LHC data logging
 - -Exact data definition not yet finalized

11 June 2003 ST-EL Søren Poulsen

Conclusion

Progress

- -Electrical equipment defined, in installation
- -Controls hardware and infrastructure in place
- -Controls software still open for development
- -Operational experience already accumulated
- -Potential outstanding issues to fix before 2005
- •More information?
 - -http://st-div.web.cern.ch/st-div/groups/el/el.htm

17

11 June 2003

ST-EL Søren Poulsen

18

Last slide

Thank you!

- •More information?
- •Questions?
- •Or go directly to
 - -http://st-div.web.cern.ch/st-div/groups/el/el.htm

19 11 June 2003 ST-EL Søren Poulsen