

Why? 1 to validate individually the LHC technical systems the technologies and

2 to investigate their collective behaviour

in normal conditions during transients during exceptional conditions

With respect to vacuum, cryogenics, interlocks, protection and powering String 2 is representative of a full cell in the regular part of an LHC sector

Schedule

Experiments

Assembly mechanical design

assembly

- procedures
 - quality assurance

- the final superfluid helium
- cooling loop
- beam screen cooling loop
- thermo-hydraulics and
- propagation of quenches

- local and global ²rotection
 - quench detection
 - several circuits
 - quench propagation
 - HTS current leads

bus bars

- Vacuum
- mechanical design
- procedures for assembly and

Cryogenics

- testing
- behaviour of the vacuum systems
- beam screens beam induced heating, guench induced deformations and currents

- final design converters
- 15 independent circuits
- high precision DCCTs
- dipole circuit topology
- Powering digital regulation
 - tracking
 - EMC

... but provides, in some cases, only partial validations or no information

Layout

String 2

Preparation of the site

Infrastructure: Racks & Cabling

Preparation of the site

Powering Area

R.Saban, CP Workshop, April 5-6 2001 - 6

Communication Infrastructure

- collaboration with BARC-Bombay
- specifications by users
 - database
 - screens
 - functions (custom developments, trends, alarms, etc.)
- developments following IAS defined standards
- stays at CERN for initial debugging and commissioning
- 10 man months for the development
- ~30 screens

Controls for Cryogenics

Cryogenics

Controls for Magnet Protection

Courtesy R.Denz

Magnet Protection

Status

Controls for Vacuum

... also applicable to Interlocks

R.Saban, CP Workshop, April 5-6 2001 - 14

Courtesy R.Gavaggio

Vacuum

Both PLCs have been tested in the lab. They are being installed as the gauges are activated.

Interlocks

Status

- The supervision application is being prepared
- The PLC data base is known
- The continuity test of the 55 I/O channels is progressing as the systems become available (converters, magnet protection, dump switches)

quench detection power converters dump switches cooling water

...

Controls for Power Converters

Courtesy R.Denz

Power Converters

Conservative LEGO-like approach

Wherever possible, it is based on readily available industrial components

Cryogenics Interlocks Vacuum

Profibus

Controls

Howevere, there are some inevitable (?) special home/industry made developments Magnet Protection Power Converter Control WorldFIP

R.Saban, CP Workshop, April 5-6 2001 - 20

Data Acquisition

- commercial VME/LabView/SUN-based solution
- independent from the control system but synchronized
- 1000 channels 16-bit 1 kHz
- 64 channels 16-bit 20 kHz
- all the String 1 hardware re-used

strict

- Instrumentation repository
- Grouping signals into classes prior to assigning triggers and configuration parameters
- STRING2 INSTRUMENTATION DAQ configuration file generation AND CONFIGURATION TOOL LabView DAQ Synoptic drawings to ease information retrieval **Remote Web Apache/PHP** Access Oracle 8i Web Server & **DB Server Data Loader** Fast and versatile data extractor **SCADA** Common interface to DAQ and SCADA data **Historical configuration browser**
 - Not an analysis tool, but simple visualization capabilities provided

STRING2 DATA EXTRACTOR

... in summary

Communication Infrastructure Controls Supervision Fieldbuses Data Acquisition Data Repository Database

... like for the other systems, String 2 is the place where the final design choices for the control system for LHC will be validated