LHC RF Controls

- Overview
 - LHC machine
 - Test stands
- RF controls requirements for the LHC machine
- Architecture choices
 - Industrial components in RF controls –
 What has been done
 - What can be done, what might, what cannot
 - How far should we go with industrial controls?
- Conclusions

LHC RF controls in development

- Hall 112 klystron test and reception (Ready)
 - control of whole high power line with Schneider Premium PLCs HV, klystron focus & drive, temperatures, power meters measurements of efficiency, performance
 - Schneider applets for direct Web access to individual PLCs
 - Schneider OPC server + CMW gateway for access from Java clients
- Test stands SM18 (SC Cavities)
 - same as klystron tests but with cavity and low level equipment
 - currently LabView with PLCs
 - in future will re-use same controls as klystron tests
- Hall 867 Damper Tetrodes and kicker (new)
- Hall 867 ACN tetrodes and cavity (new)
 - will use same solution as klystron test stand

RF equipment in LHC point 4 ACS: Acceleration system 400MHz SC 8 klystrons/cavities per ring 2 HV supplies in surface building SR4

- Other HV equip, Low power and controls in UX45
- ADT: Transverse dampers
 - 4 kickers/plane/ring, 2 tetrodes/kicker RA43/45
 - Power supplies in SR4, Low power and controls in UX45
- ACN: Capture 200MHz room temperature
- 4 cavities/ring
- 5 tetrodes/cavity
- Power supplies in SR4, controls etc. in UA43/45

UX 45

101 81 3 g/

TX 46

RF controls for the LHC machine

- Remote access to ALL control points
 - much of the equipment will be inaccessible during operation
 - minimise manual adjustments needed
- Autonomous operation
 - automatic surveillance
 - alarms
 - logging
- Fast monitoring diagnostics
 - analogue signals for observation and Post Mortem
 - dedicated analogue acquisition crates
- · Make maximum use of COTS equipment (PLCs as "ECAs")
 - robust, easy to integrate
 - sufficient performance for most applications

Controls architecture...?

Which parts can we do with PLCs?

- What can be done:
 - All cavity controls and measurements, except a few
- What might be done:
 - Low Level RF "slow" controls items: phase shifters delays loop switches
- What cannot be done:
 - Acquisition for T < 10ms sampling
 - Function Generator
 - Slow timing
 - Fast timing

How far do we go with industrial controls?

- Can integrate PLCs and all RF equipment using COTS or CERN standard components
 - OPC, CMW
 - DataViewer, standard operation GUIs
 - Direct interface to Alarm System
 - Can provide all facilities for the operator and specialist using these
- But, SCADA system could still be useful for diagnostic applications
- synoptics, fixed displays
- trending (linked to central logging DB?)
- UNICOS:

•

- seems difficult to integrate custom equipment into UNICOS PLC framework
- but PVSS tools could be useful
- Open questions:
 - How far should we go in giving non-PLC equipment PLC-type interface to facilitate use of SCADA systems?
 - What SCADA features can we use?
 - Is there really an interest in taking a full industrial software environment simply because we have used PLCs for part of the interface?

Conclusions

- · Already investing in industrial controls solutions for LHC RF
- · Will have a mixture of PLCs and custom equipment
- Not clear how far we can go with SCADA/UNICOS
- But some supervision layer tools may be useful
- More discussion necessary...