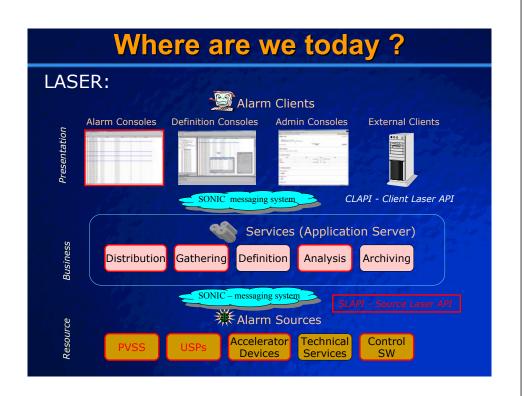
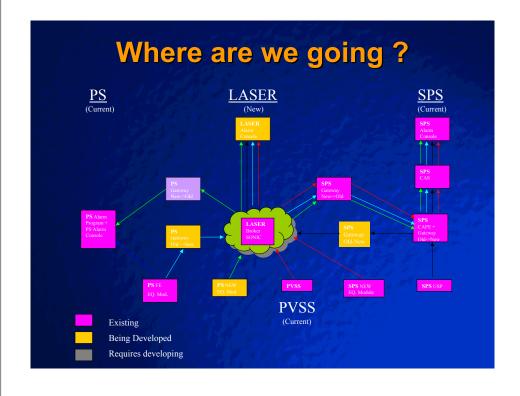
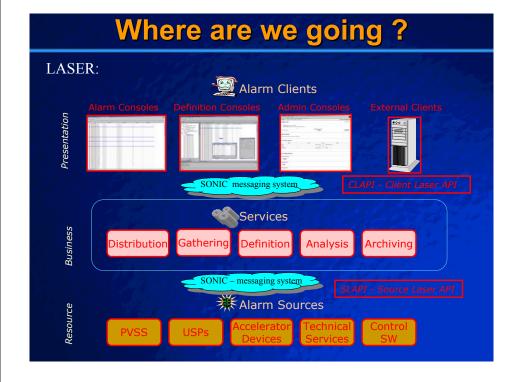


Talk Outline


- Where are we today ?
- Where are we going?
- What will we have for TT40 /QRL?
- Some remaining questions
- Conclusions

Where are we today?


- 'CURRENT':
 - The PS alarm system:
 - Serves the MCR, control group and equipment groups
 - Alarm/display program polls the requested alarm working set(s)
 - Strongly coupled to the PS equipment module
 - Good interactive facilities back to the equipment module
 - One control database for alarm descriptions and configuration
 - The SPS, CERN technical services and safety alarm system:
 - Serves the PCR, TCR, SCR, controls group and equip, groups
 - Surveillance progs. and a central alarm server, run permanently
 - Alarm consoles connect to the server on demand
 - Source API lib, but no 'open' client API
 - Database used for alarm descriptions, configuration and archiving


Where are we today?

- 'NEW' in the pipeline:
 - Building the system called: LASER Lhc Alarm SERvice – using 'new' technology:
 - Source API: 'C' or Java
 - J2EE Application Server EJB's, JMS (SONIC messaging system)
 - Client API: Java
 - NetBeans / using the Gui Platform (GP) wrapper for alarm consoles

What will we have for TT40 / QRL ?

- Some deadlines:

 - TT40 tests, September this year
 QRL soon after, before end of year
 next year LHC hardware testing / commissioning
- What we will guarantee for the above:
 alarm consoles to display alarms from any source:
 - current alarm consoles
 - current alarm archive
 - use the above to test and verify the LASER prototype
- Hope to provide a LASER vertical slice with new alarm consoles and integrated archive

What will we have for TT40 / QRL ?

- TT40:
 - Vacuum:
 - Pressure:
 - PVSS, Java source API or the 'C' source API
 - Sector valves:
 - current system
 - BI Equipment:
 - Beam Loss:
 - current system
 - Screens in beam:
 - existing SSIS system, 20 sec. poll frequency of equipment states

What will we have for TT40 / QRL ?

- TT40:
 - BT Equipment:
 - Extraction:
 - Michel's device server, new 'C' source API
 - TED. Stoppers:
 - existing SSIS system
 - Magnets:
 - Current measurement and status checks:
 - existing NODAL system
 - SPS2001 Business Layer:
 - Interlocks and associated surveillance:
 - existing SSIS system
- ?

What will we have for TT40 / QRL ?

- QRL:
 - Vacuum:
 - Pressure:
 - will use: PVSS, new 'C' API
 - Cryogenic systems:
 - Temperature, pressure, ...:
 - PVSS, new 'C' API

Some remaining Questions

- Front End COMmon Software Architecture:
 - PS ALARM type interface ?
 - Currently, the interface for an equipment can only expose 1 alarm state at a time via property ALARM
 - The alarm state cannot contain attributes / properties
 - Should the ALARM property be represented by a 'structure'?
 - It will use CMW 'monitoring' with 'intermediate' property polling
 - Equipment alarms need to have a cycle dependency:
 - A beam loss monitor might detect losses in more than 1 'elementary' cycle, e.g. SPS main, P1 and MD, P2 cycles.
 - Some alarm states will be required to be tagged at source with a time stamp precision to within a microsecond
 - The LASER source API has been designed to be used directly by alarm generators.

Some remaining Questions

- Databases:
 - Alarm information is currently spread over:
 - Equipment Group DB's, SPS alarm DB, PS DB, LHC ref. DB.
 - How do we feed the LASER DB with:
 - Alarm definitions
 - Alarm system configuration
 - Archiving:
 - Meta data
- DIWG, DIP: domain domain connectivity:
 - What will it be ?
 - LASER covers all systems. Will we need another 'gateway' to the

Some remaining Questions

- The Alarm Review Process:
 - What is an alarm, and what is not?
 - How important is an alarm?
 - Who is interested in the alarm?
- There are 'formal' review procedures:
 CERN and the LHC need to follow such procedures, but it requires experience and time

Conclusions

- The new technology has a very steep learning curve.
- My impression is that it is still in its infancy:
 - Important changes took place between the previous and current EJB
 - versions
 The selected Application Server from Oracle has only recently been
 - Application Server 'clustering' is the hot topic for redundancy, but little practical experience exists statement by an Oracle expert!
- BUT, we are building LASER using this technology and making progress - be it slower than I would like.
- We will have alarm facilities for TT40 and QRL.

Conclusions

- The new FECOMSA framework is an important element in the control system.
- Important database decisions have to be taken and supported.
- What is, and is not, an alarm, and its resulting priority must be given serious, and professional consideration.